Categories
Data Projects

Comparing GHG emissions from personal vehicles

Our analysis of GHG emissions from personal vehicles show that electric, hydrogen and biogas cars are best for climate in Norway and Sweden.

There has been a lot of debate around the actual climate benefits of low-emission vehicles, and different studies come to different conclusions. Regional variations can explain part of these differences. We wanted to see if we could conclude on this topic for Norway and Sweden, and if our findings would be robust across vehicle sizes. To find that out, we calculated emissions from manufacturing, using and scrapping cars in both countries, taking into account variables such as fuel/energy type and origin, vehicle size and weight class.

Cars come in all shapes and sizes, so to establish a representative analysis we collected data on as many vehicles as possible, from available online databases and websites. Our dataset includes more than 7800 cars running on fossil-fuel, 6 models with hydrogen, 63 hybrid, 28 with (bio)gas, and 67 electric models.

We have data on manufacturer and model, fuel type and consumption (both theoretical (NEDC) and real), on vehicle weight and class. For low-emission vehicles we also collected specific data on technology, battery size, weight, energy density and energy efficiency.

We analysed the data and established correlations between vehicles curb-weight, battery capacity, battery weight and energy/fuel efficiency. There are of course exceptions, but most vehicles follow the same trend. For example larger electric vehicles have heavier batteries, with higher energy capacity and use more energy per kilometer.

Correlation between vehicle weight and battery weight for 32 models of electric vehicles.

We categorised the vehicles and identified low-emission equivalents for most of the conventional fossil-fuel vehicles within the six weight-classes A to F. We then combined the data on fuel use and vehicle characteristics with our data on footprint for energy and materials, to calculate the life-cycle greenhouse gas emissions of each car technology.

Illustration of our findings for hydrogen cars in weight-class C in Norway

This approach takes into account the differences in GHG footprint for fuels in Norway and Sweden, and differences in use of the cars. The conclusion is similar for both countries: electric, hydrogen and biogas cars are best for climate in Norway and Sweden, provided that the hydrogen is from low-emissions sources (e.g. electrolysis or reforming with CCS).

Findings for weight-class C in Sweden, across technologies and fuel types

They worked on this project:

Categories
Data Projects

Finding CO2 for capture and storage in Europe

Carbon dioxide emissions are, unfortunately, present virtually everywhere in the world. Finding sources of CO2 emissions large enough to be captured and stored is however a more challenging task.

Carbon dioxide emissions are virtually everywhere in Europe, but which of these can be captured and stored?

Large power plants, industrial sites and waste incineration plants are typically good candidates for CO2 capture and storage, since they emit large quantities of CO2 at fixed locations. In 2017 there were ca. 2000 of these plants in Europe, each emitting more than 100 000 tonnes CO2 per year.

Endrava mapped each of the plants in our data-analysis tool, captureMap. The Norwegian oil and gas association supported the initial development of the tool.

CaptureMap shows that large sites emitted 1 644 million tonnes CO2 in 2017, which is 38% of the European GHG emissions. Of these, our estimations show that 1 337 million tonnes CO2 could be captured, from ca. 1 800 large emission sites in Europe. This represent about one third of all the greenhouse gas emissions in Europe in 2017.

1800 sites in Europe could implement carbon capture, which could make it possible to store 1 337 million tonnes CO2 per year, ca. 30% of the European GHG emissions

Our tool allows finding candidates for piloting and scaling-up carbon capture in Europe, and is already successfully used by the Northern Lights project for this purpose. It includes metadata about each emission site, distances to sea and to potential storage hubs, potentially important clusters of emissions, as well as an overview of coastal and innland ports in Europe.

Illustration of the CO2 database

They work on this project:

Valentin Vandenbussche
Sigrid Møyner Hohle
Eric Rambech